2.4 Paths and curves

We all know what curves are. Often we can describe them in more than one way:

- as points satisfying an equation, like $y=x^{\wedge} 2$
- parametrically, like $c(t)=(t, t \wedge 2)$

This section is about the parametric description. It provides a different way to describe functions $c: R \rightarrow R \wedge n$, and also a way to understand the curves.

Terminology: a path is a mapping

$$
c:[a, b]->R \wedge n \quad[a, b] \quad{ }_{c} \mathbb{R}
$$

The velocity vector of a path $c(t)$.
If $c(t)=\left(c_{-} 1(t), \ldots, c_{-} n(t)\right)$ are the component functions, the velocity of c is $c^{\prime}(t)=\left(c _1^{\prime}(t), \ldots, c _n^{\prime}(t)\right)$

It's length is the speed. It points in the tangent direction to the curve at $c(t)$.

Typical question: Consider the path $\mathrm{c}(\mathrm{t})=\mathrm{t}(\cos (\mathrm{t}), \sin (\mathrm{t}))$
a. Find the velocity vector of c at $\mathrm{t}=2$

$$
c^{\prime}(t)=(\cos t-t \sin t, \sin t+t \cos t)
$$

b. Find the equation of the tangent line to the curve at c(2).

$$
v=c(2)+t c^{\prime}(t)
$$

